
Copyright @ 2019 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.01, IssueNo.03, April -2019, Pages: 165-172

APC AND OMS BASED LUT DESIGN FOR

MULTIPLIER APPLICATIONS

1. NUKATHOTI GOPI, 2. JANGILI PRASAD

1. M. Tech Student, Dept. of ECE, ABR College of Engineering and Technology, Kanigiri, A.P

2. Assistant Professor, Dept. of ECE, ABR College of Engineering and Technology, Kanigiri, A.P

ABSTRACT:

Recently, we have proposed the antisymmetric product coding (APC) and odd-multiple-storage (OMS) techniques

for lookup-table (LUT) design for memory-based multipliers tobe used in digital signal processing applications.

Each of these techniques results in the reduction of the LUT size by a factorof two. In this brief, we present a

different form of APC and a modified OMS scheme, in order to combine them for efficient memory-based

multiplication. The proposed combined approachprovides a reduction in LUT size to one-fourth of the conventional

LUT. We have also suggested a simple technique for selective sign reversal to be used in the proposed design. It is

shown that theproposed LUT design for small input sizes can be used for efficient implementation of high-precision

multiplication by input operand decomposition. It is found that the proposed LUT-based multiplier involves

comparable area and time complexity for a word size of 8 bits, but for higher word sizes, it involves significantly

less area and less multiplication time than the canonical-signed-digit (CSD)-based multipliers.

INTRODUCTION:

 Along with the device scaling over the years,

semiconductor memory has become cheaper, faster

and more power-efficient. Moreover, according to the

projections of the ITRS embedded memories will

have dominating presence in the SoC, which may

exceed 90% of total SoC content. It has also been

found that the transistor packing density of memory

components is not only high but also increasing much

faster than the transistor density of logic components.

Apart from that, the memory-based computing

structures are more regular than the multiply-

accumulate structures; and offer many other

advantages, e.g., greater potential for high throughput

and low-latency implementation; and less dynamic

power consumption. Memory-based computing is

well-suited for many DSP algorithms, which involve

multiplication with fixed set of coefficients.

The basic functional model of memory-

based multiplier is shown in Fig.1.1. Let A be a fixed

coefficient and X be an input word to be multiplied

with A. Assuming X to be a positive binary number

with word-length L, there can be 2L possible values

of X, and accordingly, there can be 2L possible

values of product C = A·X. Therefore, for memory

based multiplication, an LUT of 2L words consisting

of precomputed product values corresponding to all

possible values of X is conventionally used. The

product-word A·Xi is stored at the location whose

address is the same as Xi for 0 ≤ 2L−1, such that if L-

bit binary value of Xi is used as address for the LUT,

then the corresponding product value A·Xi is

available as its output. Several architectures have

been reported in the literature for memory-based

Implementation of DSP algorithms involving

orthogonal transforms and digital filters but do not

find any significant work on LUT optimization for

memory based multiplication. A new approach to

LUT design for memory-based multiplication, which

could be used to reduce the memory-size by half for

small input-widths. It is shown that although 2L

possible values of X correspond to 2L possible values

of C = A.X, only (2L/2) words corresponding to the

odd multiples of A may only be stored in the LUT

while the even multiples of A could be derived by

left-shift operations of one of those odd multiples.

Using this approach, one can reduce the LUT size to

half, but it has significant combinational overhead

since it requires a barrel-shifter along with a control-

circuit to generate the control-bits for producing a

maximum of (L − 1) left-shifts, and an encoder to

map the L-bit input word to (L − 1)-bit LUT address.

In this project, two new schemes are proposed for

optimization of LUT with lower area- and time-

Copyright @ 2019 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.01, IssueNo.03, April -2019, Pages: 165-172

overhead. One of the proposed optimization is based

on exclusion of sign-bit from the LUT address, and

the other optimization is based on a recoding of

stored product word.

 GENERAL LUT DESIGN

It is possible to store binary data within

solid-state devices. Those storage "cells" within

solid-state memory devices are easily addressed by

driving the "address" lines of the device with the

proper binary values. A ROM memory circuit

written, or programmed, with certain data, such that

the address lines of the ROM served as inputs and the

data lines of the ROM served as outputs, generating

the characteristic response of a particular logic

function. Theoretically, could ROM chip can

program to emulate whatever logic function, wanted

without having to alter any wire connections or gates.

Consider the following example of a 4 x 2 bit ROM

memory programmed with the functionality of a half

adder:

Figure 4X2 ROM

If this ROM has been written with the above

data representing a half-adder's truth table, driving

the A and B address inputs will cause the respective

memory cells in the ROM chip to be enabled, thus

outputting the corresponding data as the Σ (Sum) and

C out bits. Unlike the half-adder circuit built of gates

or relays, this device can be set up to perform any

logic function at all with two inputs and two outputs,

not just the half-adder function. To change the logic

function, all we would need to do is write a different

table of data to another ROM chip. EPROM chip can

also program which could be re-written at will,

giving the ultimate flexibility in function. It is vitally

important to recognize the significance of this

principle as applied to digital circuitry. Whereas the

half-adder built from gates or relays processes the

input bits to arrive at a specific output, the ROM

simply remembers what the outputs should be for any

given combination of inputs. This is not much

different from the "times tables" memorized in grade

school: rather than having to calculate the product of

5 times 6 (5 + 5 + 5 + 5 + 5 + 5 = 30), school-

children are taught to remember that 5 x 6 = 30, and

then expected to recall this product from memory as

needed. Likewise, rather than the logic function

depending on the functional arrangement of hard-

wired gates or relays (hardware), it depends solely on

the data written into the memory (software).

LUT FOR MULTIPLIERS:

Multiplications can be computationally expensive in

most hardware and software implementations.

Various approaches in literature have been proposed

to alleviate this overhead, usually at the cost of

multiplication accuracy. One such example is the

conversion of multiplication coefficients to dyadic

fractions, which can be computed with a minimal

sequence of bit shifts and additions. However, such

approaches have proved to be limiting, requiring a lot

of hand-tweaking to simultaneously minimize the

complexity of the calculation as well as the deviation

from the desired result. Instead, a table-based lookup

scheme to implement the multiplication steps is

proposed. Whenever a multiplication result is needed,

the system can simply look up the correct result on a

precomputed table, without needing any computation

whatsoever. This greatly simplifies the transform and

inverse calculations. Table lookup can replace any

coefficient multiplication or unary operation.

Although table lookup is often simpler than the actual

calculation, the table size grows exponentially with

the input signal range. However, for image and video

applications, most signals are unsigned 8 bit values,

which require only 256 possible cases, so the table

based approach can be implemented with a

reasonable cost. To implement coefficient

multiplication, where the coefficient is 0.6834. To

avoid using a multiplier, traditional lossless

transforms approximate the given coefficient with a

dyadic fraction (for example, to ¾). Then the

coefficient multiplication can be implemented using

shifts and additions as shown. Table lookup is also

depicted .Unlike in the dyadic fraction case, table

based multiplication yields a much more accurate

approximation of the original coefficient.

Proposed System Architecture

A new approach to LUT design is presented,

where only the odd multiples of the fixed coefficient

are required to be stored, which is referred to as the

odd-multiple-storage scheme in this brief. In

addition, we have shown that, by the anti-symmetric

product coding approach, the LUT size can also be

reduced to half, where the product words are recoded

as Anti-symmetric pairs.

Copyright @ 2019 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.01, IssueNo.03, April -2019, Pages: 165-172

if the input bit size= 5 then the memory stored is of

2^5/2 = 15 locations which results in a reduction in

LUT size by factor of 2.

Proposed LUT APC Part

The structure and function of the LUT-based

multiplier for L = 5 using the APC technique is

shown in Figure It consists of a four-input LUT of 16

words to store the APC values of product words as

given in the sixth column of Table I, except on the

last row, where 2A is stored for input X = (00000)

instead of storing a “0” for input X = (10000).

Besides, it consists of an address-mapping circuit and

an add/subtract circuit. The address-mapping circuit

generates the desired address (x3’, x2’, x1’, x0’). A

straightforward implementation of address mapping

can be done by X’L using x4 as the control bit. The

address-mapping circuit, however, can be optimized

to be realized by three XOR gates, three AND gates,

two OR gates, and a NOT gate, as shown in Figure.

Note that the RESET can be generated by a control

circuit (not shown in this figure) .The output of the

LUT is added with or subtracted from 16A, for x4 = 1

or 0, respectively, by the add/subtract cell. Hence, x4

is used as the control for the add/subtract cell.

Figure Proposed APC Part

For simplicity of presentation, it is assumed both X

and A to be positive integers. The product words for

different values of X for L = 5 are shown in Table I.

It may be observed in this table that the input word X

on the first column of each row is the two’s

complement of that on the third column of the same

row. In addition, the sum of product values

corresponding to these two input values on the same

row is 32A. LUT based multiplier for L=5 using the

APC technique

W = Width of A

L = Width of X

Table: Stored APC Words

Copyright @ 2019 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.01, IssueNo.03, April -2019, Pages: 165-172

16 x (W+4)  16 Locations and each location

having (W+4) bits.

. Let the product values on the second and

fourth columns of a row be u and v, respectively.

Since one can write

 u = [(u + v)/2 − (v − u)/2] and

 v = [(u + v)/2 + (v − u)/2], for (u + v) = 32A,

 U=16A+ [(V-U)/2] V=16A-

[(V-U)/2]

The product values on the second and fourth

columns of Table I therefore have a negative mirror

symmetry. This behavior of the product words can be

used to reduce the LUT size, where, instead of

storing u and v, only [(v − u)/2] is stored for a pair of

input on a given row. The 4-bit LUT addresses and

corresponding coded words are listed on the fifth and

sixth columns of the table, respectively. Since the

representation of the product is derived from the

antisymmetric behavior of the products, we can name

it as antisymmetric product code. The 4-bit address

X_ = (x_3,x_2,x_1,x_0) of the APC word is given by

Proposed APC-OMS Part
 For the multiplication of any binary word X

of size L, with a fixed coefficient A, instead of

storing all the 2L possible values of C = A · X, only

(2L/2) words corresponding to the odd multiples of A

may be stored in the LUT, while all the even

multiples of A could be derived by left-shift

operations of one of those odd multiples. Based on

the above assumptions, the LUT for the

multiplication of an L-bit input with a W-bit

coefficient could be designed by the following

strategy.

1) A memory unit of [(2L/2) + 1] words of (W + L)-

bit width is used to store the product values, where

the first (2L/2) words are odd multiples of A, and the

last word is zero.

2) A barrel shifter for producing a maximum of (L −

1) left shifts is used to derive all the even multiples of

A.

3) The L-bit input word is mapped to the (L − 1)-bit

address of the LUT by an address encoder, and

control bits for the barrel shifter are derived by a

control circuit.

Table: Stored APC-OMS Words

RESULT:

X’
XL,if x4=1

X′L,if x4=0

Copyright @ 2019 ijearst. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.01, IssueNo.03, April -2019, Pages: 165-172

CONCLUSION :

 It is found that the proposed LUT-based

multiplier involves comparable area and time

complexity for a word size of 8 bits, but for higher

word sizes, it involves significantly less area and less

multiplication time than the canonical-signed-digit

(CSD)-based multipliers. For 16 and 32 bit word

sizes, respectively, it offers more than 30% and 50%

of saving in area-delay product over the

corresponding CSD multipliers.

The proposed LUT

multipliers for word size L = W = 5 bits are coded in

VHDL and synthesized by XILINX using the TSMC

90-nm Library, where the LUTs are implemented as

arrays of constants. The CSD-based multipliers

having the same addition schemes are also

synthesized with the same technology library.

REFERENCES

[1] J.-I. Guo, C.-M. Liu, and C.-W. Jen, “The

efficient memory-based VLSI array design

for DFT and DCT,” IEEE Trans. Circuits

Syst. II, Analog Digit. Signal Process, vol.

39, no. 10, pp. 723–733, Oct. 1992.

[2] D. F. Chiper, M. N. S. Swamy, M. O.

Ahmad, and T. Stouraitis, “A systolic array

architecture for the discrete sine transform,”

IEEE Trans. Signal Process., vol. 50, no. 9,

pp. 2347–2354, Sep. 2002.

[3] H.-C. Chen, J.-I. Guo, T.-S. Chang, and C.-

W. Jen, “A memory-efficient realization of

cyclic convolution and its application to

discrete cosine transform,” IEEE Trans.

Circuits Syst. Video Technol., vol. 15, no. 3,

pp. 445–453, Mar. 2005.

[4] P. K. Meher, “New approach to LUT

implementation and accumulation for

memory-based multiplication,” in Proc.

IEEE ISCAS, May 2009, pp. 453–456.

[5] P. K. Meher, “New approach to LUT

implementation and accumulation for

memory-based multiplication,” in Proc.

IEEE ISCAS, May 2009, pp. 453–456.

[6] P. K. Meher, “New look-up-table

optimizations for memory-based

multiplication,” in Proc. ISIC, Dec. 2009,

pp. 663–666.

